World major rivers
In [1]:
%matplotlib inline
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
def plot_wmts(url, layer_name, extent, figsize=(9, 7)):
subplot_kw = dict(projection=ccrs.PlateCarree())
fig, ax = plt.subplots(figsize=figsize, subplot_kw=subplot_kw)
ax.set_extent(extent)
ax.add_wmts(url, layer_name)
gl = ax.gridlines(draw_labels=True)
gl.xlines = gl.ylines = False
gl.xlabels_top = gl.ylabels_right = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
return fig, ax
In [2]:
url = 'http://map1c.vis.earthdata.nasa.gov/wmts-geo/wmts.cgi'
layer_name = 'BlueMarble_ShadedRelief_Bathymetry'
dx = dy = 5
Amazon river delta
In [3]:
lon = -(50 + 5/60. + 22/60./60.)
lat = -(0 + 42/60. + 28/60./60.)
fig, ax = plot_wmts(
url,
layer_name=layer_name,
extent=[lon-dx, lon+dx, lat-dy, lat+dy]
)
Mississippi
In [4]:
lon = -(89 + 15/60. + 12/60./60.)
lat = 29 + 9/60. + 4/60./60.
dx = dy = 5
fig, ax = plot_wmts(
url,
layer_name=layer_name,
extent=[lon-dx, lon+dx, lat-dy, lat+dy]
)
La Plata
In [5]:
lon = -(55 + 47/60.)
lat = -(35 + 40/60.)
dx = dy = 5
fig, ax = plot_wmts(
url,
layer_name=layer_name,
extent=[lon-dx, lon+dx, lat-dy, lat+dy]
)
Congo
In [6]:
lon = (12 + 27/60.)
lat = -(6 + 4/60. + 45/60.)
dx = dy = 5
fig, ax = plot_wmts(
url,
layer_name=layer_name,
extent=[lon-dx, lon+dx, lat-dy, lat+dy]
)
Ganges
In [7]:
lon = (90 + 50/60.)
lat = (22 + 5/60.)
dx = dy = 5
fig, ax = plot_wmts(
url,
layer_name=layer_name,
extent=[lon-dx, lon+dx, lat-dy, lat+dy]
)
Indus
In [8]:
lon = (67 + 25/60. + 51/60./60.)
lat = (23 + 59/60. + 40/60./60)
dx = dy = 5
fig, ax = plot_wmts(
url,
layer_name=layer_name,
extent=[lon-dx, lon+dx, lat-dy, lat+dy]
)